
Ransomware Classifier using Extreme Gradient
Boosting
Niranjan Agnihotri

Computer Science Graduate, (2017)
Walchand College of Engineering, Sangli, India

Abstract— Ransomwares are notorious threats that have
become rampant in the cyber world, the peculiarity about
them is that they encrypt user’s critical data using strong
encryption algorithms. The encrypted data can only be
recovered by paying a ransom in bitcoins to the attacker. A
traditional signature based detection approach is slow and
time consuming and cannot handle the zero-day attacks.
Therefore, in this paper, an attempt is made to build a pro-
active Machine Learning based classifier which is trained to
detect the ransomwares based on the static attributes of the
PE files.
Keywords— Ransomware, machine learning, gradient boosting,
Portable Executable file, classification, cyber security

I. INTRODUCTION

Manual malware analysis is a multi-staged and a time-
consuming process. With the ever-expanding threat
landscape, it becomes difficult to handle the increasing
volume of threats while keenly adhering to the manual
malware analysis techniques. Ransomware, as a threat,
stands out of all other types of malwares because it hijacks
user’s critical data by encrypting it using the modern
cryptographic algorithms. Ransomware, has proved to be
one of the deadly threats because it’s malicious changes
cannot be undone without paying the ransom to the attacker.
Therefore, with the advent of several machine learning
techniques, it becomes obvious and simultaneously
necessary to utilize the huge repository of data and samples
to figure out some method to train a machine learning
model to detect ransomwares quickly.

It is evident that most of the malwares are authored to
target the windows platform, where most of the software is
distributed in the famous Portable Executable [1] (PE)
format. This is a structured format, therefore, it’s structure
can be exploited to fetch several attributes which can be
helpful to train a machine learning model. Several attempts
[2] have been made to extract various attributes from the PE
file format. The attributes extracted are mostly in the
numerical format or categorical format, which makes the
work of training the classifier easy.

In this attempt of building a machine learning based
ransomware classifier, we collect a pool of clean samples
and a pool of ransomware samples from the internet. PE file
attributes are collected from these samples with the help of
an attribute extractor [3] script and a dataset is built. This
dataset is then split into training and test sets. A supervised
machine learning model is then trained on the training set
and is evaluated on the test set.

Nowadays, machine learning has been used widely for
threat detection. Various models are built using supervised
learning. Researchers have developed several approaches in

using machine learning for malware detection may it be by
training a neural network by feeding [4] it a whole portable
executable file or as done by researchers at Invensia Labs
by training a deep neural network for Malware detection
using two-dimensional binary program features [5]. The
rapid use of machine learning techniques in malware
detection and the rampant problem of ransomwares
motivates to work upon building a classifier which is
specifically trained to identify ransomwares.

There could be several approaches to build a classifier to
detect ransomwares. This work restricts itself at building a
machine learning based classifier which is trained upon
static attributes of portable executable files.

II. CHALLENGES IN MANUAL ANALYSIS AND SIGNATURE

BASED TRADITIONAL APPROACH

Several challenges are involved in manually analysing
the samples. Some of them are as follows -

A. The Volume of emerging threats

With the ever-increasing threat space, it becomes
difficult to handle the volume at which new threats are
created and distributed. Not just new threats, but malware
authors also release the threats into different variants, who
show similar traits but have slight differences. With the
increasing volume of malwares, there are several new
ransomwares like Petya, WannCry, TeslaCrypt etc. which
pose a potent threat to the user’s critical data.

B. The Time required to manually analyse a sample

It requires a lot of manual effort and time to analyse a
sample and classify it as a specific kind of threat. Time
delay in the case of ransomware processing implies that all
the infected users would lose their valuable data.

C. Zero Day Attacks

Manual Analysis generally entails a detection based on
signature. Therefore, initially, some people always get
infected and suffer from a new threat, until the threat is
manually analysed and an anti-virus signature is available
through a definition update. Therefore, a traditional
signature based detection is ineffective against zero-day
attacks. Therefore, users who face the ransomware attacks
from new threats have no protection from signature based
technologies.

D. Signature Evasions

The antivirus signatures are written for specific threats or
families of threats. Therefore, it becomes easy for the
malware author to perform trivial tweaks in his malicious

Niranjan Agnihotri / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 45-47

www.ijcsit.com 45

ISSN:0975-9646

code and redistribute the malware until a new signature
against the new version of the malware is released.
Therefore, traditional anti-virus signatures can be easily
evaded. Such evasions in the case of ransomwares would be
severely detrimental for the end-users and their critical data.

Therefore, a machine learning model trained to detect

ransomwares would be very useful for protecting the user’s
data from encryption.

III. PROPOSED SYSTEM

To utilize the information from the static attributes of a
large pool of portable executable files, a machine learning
classifier is to be trained.

Firstly, an attribute extractor [3] script will extract various
numerical values from the executable files for the
corresponding attributes. These values would be then fed as
an input to a trained classifier which will predict if the
given sample is a ransomware or a non-ransomware.

Fig. 1 The workflow for Ransomware Classifier.

The workflow diagram in Fig. 1 adumbrates the overall
workflow from extracting the static attributes from samples
of portable executable files to their classification.

IV. METHODOLOGY

There are several steps in building the model which are
enlisted as follows.

A. Data Collection and Attribute Extraction

Firstly, samples were collected form the various sources
[6] [7] on the internet in the executable format. The samples
that were used for training the model were taken from two
different classes. The first class contained non-ransomware
samples and the second class contained several families of
ransomwares. These samples were first maintained in two
different folders ‘/ransomware’ and ‘/non-ransomware’.
With the help of open-source attribute extractor codes [3]

available on the git-hub, static attributes were computed on
these samples whose values were recorded in the csv file.

B. Making the data ready for machine learning

In this step, all the rows having NANs were removed. A
pairwise Euclidean distance was found among all the rows
in the dataset. One of the rows among every pair whose
Euclidean distance lied below 0.00005 were removed from
the dataset. This threshold was decided by manually
checking the rows with a very less Euclidean distance and
by understanding that there was a very little change in the
values of those rows. At the same time all the exact
duplicates were also removed from the dataset, thus
maintain all the unique rows.

The dataset was then split into train and test sets. The
data set was scaled to expediate the process of training the
model. Finally, the samples from the ‘ransomware’ family
were labelled as ‘1’ and the samples from the ‘non-
ransomware’ family were labelled as ‘0’

C. Feature selection and Ranking

The attribute extractors extracted 205 different attributes
from the samples. Therefore, to reduce the dimensionality
of the dataset and to study which attributes contribute
strongly towards predictions feature selection process was
done using some techniques enlisted below.
a) At first, Karl Pearson’s correlation coefficient was

found out among all the possible pairs of attributes.
Around 20 pairs of highly positively corelated
attributes were found among which 10 attributes were
eliminated.

b) Attributes with very low or zero variance attributes
were also found in the dataset. Seven of such attributes
were removed as they had no information for
predicting ransomwares.

c) Feature Selection Using Recursive Feature Elimination
– In this technique, several random forests were built
using the training set, each time selecting a different
subset of the 188 remaining features. The set of
attributes corresponding to the forest with highest
accuracy were considered the most informative
attributes. With this technique it was found that out of
188 features, 135 features were helpful in predicting
the outcome. These 135 features had a good variance
and were not corelated with each other conforming that
they had some unique information.

d) Feature Selection using XGBoost [9] Algorithm –
A simple model was built on the train set using the

XGBoost [9] algorithm. This is one of the most
sophisticated algorithms in machine learning and has a
feature of attribute ranking. According to this algorithm
139 attributes were most informative in predicting
ransomwares. All the 135 important attributes figured
out by Recursive Feature Elimination were present in
the 139 attributes suggested by XGBoost [9] feature
ranking algorithm.

Finally, the 139 features suggested by the XGBoost

model were finalized for training the machine learning
model.

Niranjan Agnihotri / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 45-47

www.ijcsit.com 46

D. Model Selection and Building

Three tree based models namely: CART (Classification
and Regression Trees), Random Forests [11] and XGBoost. [9]
were tried. But as XGBoost [9] outperformed the other two,
it was selected for the classification task. XGBoost [9] is an
ensemble based algorithm which has been helping a lot of
data scientists to win Kaggle competitions. It is an
extremely fast algorithm and supports parallel building of
the forest. It works on the principle of Gradient Boosting.

At first a basic XGBoost [9] forest with its default
parameters was built on the training set. It gave an accuracy
of 83% with a False Positive rate of 4%. After building this
preliminary model, parameter tuning [10] was done in order
properly utilize different features of the model. In the
process of parameter tuning [10] around 10 different
parameters, viz. the learning rate, max depth etc. were tuned.

V. RESULTS

Fig. 2 The graph above depicts the ROC curve for the completely tuned

final XGBoost Model.

Fig. 1 shows Receiver Operating Characteristic curve for
the final model of the classifier. It is evident from the curve
that a 0.3% False Positive rate is achieved. Some other
results on the test set with a completely tuned XGBoost [9]
model are as follows.
a. Test set size – 19,901 rows with 139 attributes as

columns.
b. Final Model Accuracy – 89.80%
c. Final Model False Positive Rate – 0.3%
d. Final Model True Positive Rate – 88.08%

VI. FUTURE SCOPE

This is a small ensemble based classifier powered by a
powerful algorithm like XGBoost [9]. But, with the advent
of deep learning it was tempting to use neural networks for
the above classification problem. Due to lack of
computational resources this work had to be kept limited to
the use of ensemble technique, whose results are good. But,
there seems to be a scope of improvement for using more
convolute models like neural networks to get yet more
promising results.

The limited size of data set was also a big hurdle in
training the classifier. Therefore, it would be highly
interesting to witness the results obtained by training the
classifier on a bigger dataset. Due to limited availability of
ransomware samples, the dataset was skewed therefore

techniques to handle skewed dataset have been left to the
future scope.

VII. CONCLUSIONS

A machine learning based classifier trained for
classifying ransomwares would be of a great use for cyber
security organizations. This would cut-short a lot of time
needed to analyze samples manually. This classifier would
also help in proactively detecting the threats that have never
been seen before thus mitigating zero-day attacks.

Malware authors and anti-malware experts being always
in a cat and a mouse game, there could be techniques [12] to
evade machine learning models too, as shown by the
researchers at Endgame. But as every technology has its
own limitations, overall, the ransomware classifier can be
very helpful in coping with a notorious threat as
ransomware.

ACKNOWLEDGMENT

I would like to thank malshare.com for being such a
great repository of threats without which this research
would have not got a diverse variety of samples based on
which the dataset was built. I would also like to thank the
git-hub repository creators of ‘the Zoo’ for providing
various families of ransomwares.

I would also like to thank endgame for their open source
code for attribute extraction. The tutorials from ‘machine
learning mastery’ were highly useful in training and
parameter tuning of the model.

REFERENCES
[1] Peering inside the PE by Matt Pietrek

[Online]- https://msdn.microsoft.com/en-us/library/ms809762.aspx
[2] Kartik Raman, “Selecting features to Classify Malware”,

[Online] - http://www.covert.io/research-papers/security/
Selecting%20Features%20to%20Classify%20Malware.pdf

[3] Your Model is Not Special, from Endgame. Inc. (Attributes
extractor)
[Online] - https://github.com/endgameinc/youarespecial

[4] Edward Raff, Jon Barker, Jared Sylvester, Robert Brandon, Bryan
Catanzaro, Charles Nicholas., Malware Detection by Eating a
Whole EXE, [Online]- https://arxiv.org/abs/1710.09435

[5] Joshua Saxe, Konstantin Berlin, “Deep Neural Network Based
Malware Detection Using Two-Dimensional Binary Program
Features,” IEEE 2015 10th International Conference on Malicious
and Unwanted Software: “Know Your Enemy”.

[6] Source 1 for Ransomware and Non-Ransomware Samples
[Online] - www.malshare.com.

[7] Source 2 for Ransomware and Non-Ransomware Samples
[Online] - https://github.com/ytisf/theZoo

[8] Json Brown Lee “Feature Selection For Machine Learning in
Python”. [Online] : http://www.ieee.org/

[9] Tianqi Chen and Carlos Guestrin “XGBoost: A Scalable Tree
Boosting System” [Online]. https://arxiv.org/pdf/1603.02754.pdf

[10] Complete Guide to Parameter Tuning in XGBoost (with codes in
Python)
[Online] https://www.analyticsvidhya.com/blog/2016/03/complete-
guide-parameter-tuning-xgboost-with-codes-python/

[11] Leo Breiman “Random Forests”
[Online]-
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf

[12] Hyrum S. Anderson, Anant Kharkar, Bobby Filar, Phil Roth
“Evading Machine Learning Malware Detection,”
Black Hat US 2017
[Online] - https://www.blackhat.com/docs/us-17/thursday/us-17-
Anderson-Bot-Vs-Bot-Evading-Machine-Learning-Malware-
Detection-wp.pdf

Niranjan Agnihotri / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 9 (2) , 2018, 45-47

www.ijcsit.com 47

